The Animacy Continuum in the Human Ventral Vision Pathway

نویسندگان

  • Long Sha
  • James V. Haxby
  • Hervé Abdi
  • J. Swaroop Guntupalli
  • Nikolaas N. Oosterhof
  • Yaroslav O. Halchenko
  • Andrew C. Connolly
چکیده

Major theories for explaining the organization of semantic memory in the human brain are premised on the often-observed dichotomous dissociation between living and nonliving objects. Evidence from neuroimaging has been interpreted to suggest that this distinction is reflected in the functional topography of the ventral vision pathway as lateral-to-medial activation gradients. Recently, we observed that similar activation gradients also reflect differences among living stimuli consistent with the semantic dimension of graded animacy. Here, we address whether the salient dichotomous distinction between living and nonliving objects is actually reflected in observable measured brain activity or whether previous observations of a dichotomous dissociation were the illusory result of stimulus sampling biases. Using fMRI, we measured neural responses while participants viewed 10 animal species with high to low animacy and two inanimate categories. Representational similarity analysis of the activity in ventral vision cortex revealed a main axis of variation with high-animacy species maximally different from artifacts and with the least animate species closest to artifacts. Although the associated functional topography mirrored activation gradients observed for animate-inanimate contrasts, we found no evidence for a dichotomous dissociation. We conclude that a central organizing principle of human object vision corresponds to the graded psychological property of animacy with no clear distinction between living and nonliving stimuli. The lack of evidence for a dichotomous dissociation in the measured brain activity challenges theories based on this premise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex

The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like sti...

متن کامل

Emotion expression modulates perception of animacy from faces

Article history: Received 13 July 2016 Revised 13 February 2017 Accepted 14 February 2017 Available online xxxx Discriminating real human faces from artificial can be achieved quickly and accurately by face-processing networks, but less is known about what stimulus qualities or interindividual differences in the perceiver might influence whether a face is perceived as being alive. In the presen...

متن کامل

Tripartite organization of the ventral stream by animacy and object size.

Occipito-temporal cortex is known to house visual object representations, but the organization of the neural activation patterns along this cortex is still being discovered. Here we found a systematic, large-scale structure in the neural responses related to the interaction between two major cognitive dimensions of object representation: animacy and real-world size. Neural responses were measur...

متن کامل

A New Division of the Human Claustrum Basis on the Anatomical Landmarks and Morphological Findings

Purpose: The subdivision of claustrum into parts in some species exists in literature. Those are mainly based on a pattern of its connections with various cortical areas, method of staining, immunoreactivity of its neurons etc. The aim of this study was the division of the human claustrum into different parts, for first time, based on morphology, density, arrangement of claustral neurons as wel...

متن کامل

Contributions of magno- and parvocellular channels to conscious and non-conscious vision.

The dorsal and ventral cortical pathways, driven predominantly by magnocellular (M) and parvocellular (P) inputs, respectively, assume leading roles in models of visual information processing. Although in prior proposals, the dorsal and ventral pathways support non-conscious and conscious vision, respectively, recent modelling and empirical developments indicate that each pathway plays importan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cognitive neuroscience

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2015